Ammonium N -acetyl-L-threoninate and methylammonium N -acetyl-t-threoninate

Raffaella Puliti ${ }^{\mathbf{a} *}$ and Carlo Andrea Mattia ${ }^{\text {b }}$
${ }^{\text {a }}$ Istituto per la Chimica di Molecole di Interesse Biologico CNR ${ }^{\mathbf{1}}$, Via Toiano 6, 80072 Arco-Felice Napoli, Italy, and ${ }^{\mathbf{b}}$ Dipartimento di Chimica dell' Università "Federico II" and Centro di Studio di Biocristallografia CNR, Via Mezzocannone 4, 80134 Napoli, Italy
Correspondence e-mail: puliti@chemna.dichi.unina.it

Received 21 December 1999
Accepted 24 January 2000
Ammonium N-acetyl-L-threoninate, $\mathrm{NH}_{4}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{-}$, and methylammonium $\quad N$-acetyl-L-threoninate, $\quad \mathrm{CH}_{6} \mathrm{~N}^{+}$.$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{-}$, crystallize in the orthorhombic $P 2_{1} 2_{1} 2_{1}$ and monoclinic $P 2_{1}$ space groups, respectively. The two crystals present the same packing features consisting of infinite ribbons of screw-related N -acetyl-L-threoninate anions linked together through pairs of hydrogen bonds. The cations interconnect neighbouring ribbons of anions involving all the nitrogen- H atoms in three-dimensional networks of hydrogen bonds. The hydrogen-bond patterns include asymmetric 'three-centred' systems. In both structures, the Thr side chain is in the favoured $\left(g^{-} g^{+}\right)$conformation.

Comment

Detailed investigations of the crystal structures of amino acid and oligopeptide derivatives are a useful step to arrive at the conformational preferences of polypeptide chains in proteins. Threonine (threo- α-amino- β-hydroxy- n-butyric acid) is an important amino acid necessary in the human diet and a significant constituent of many common proteins (egg albumin and lactalbumin, bovine and human serum albumin, casein, insulin, haemoglobin). Thr is among the amino acids with polar side chains that can favour, by means of intrachain hydrogen bonds, the arrangement of β-turn and β-sheet structures enhancing the folding of globular proteins.

As part of our ongoing research concerning crystallographic, conformational and thermodynamic studies of solid N-acetyl derivatives of several amino acids and peptides (Puliti et al., 1996, 1997, 1998, and references therein), we present here the crystal structures of the title salts, (I) and (II).

In the two structures, the geometry and conformation of the N-acetyl-L-threoninate moieties do not present any significant discrepancy (Tables 1 and 3): the corresponding bond lengths

[^0]and angles differ within three times the s.u.'s. All the values are in the expected ranges (Sequeira et al., 1981; Ashida et al., 1987; Engh \& Huber, 1991). The geometry of the carboxyl groups is typical of an ionized form (Parthasarathy et al., 1974): the asymmetry between the two $\mathrm{C}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles can be ascribed to the different hydrogen-bonding patterns involving the two carboxylic O atoms (see Tables 2 and 4). In fact, O2 is more strongly involved in hydrogen-bond

(I) $R=\mathrm{NH}_{4}^{+}$
(II) $R=\mathrm{MeNH}_{3}^{+}$
interactions in comparison with O1 which shows the shorter distance and the larger angle. In both structures, the acetyl group is oriented to make an almost planar five-membered cyclic system, $\mathrm{C} 1-\mathrm{H} 3 \cdots \mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$. In this way, an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction is formed between the activated $\mathrm{C} 1-\mathrm{H} 3$ group and O 3 oxygen (Taylor \& Kennard, 1982). Figs. 1 and 2 show perspective views of the asymmetric units of crystals of (I) and (II), respectively, together with the labelling schemes for non-H atoms.

The side-chain conformation of the Thr residue can be described by the torsion angles $\chi_{1,1}(\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6)$ and $\chi_{1,2}(\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 4)$ and is of $\left(g^{-} g^{+}\right)$type in both structures (Tables 1 and 3). This conformation with the hydroxyl group in gauche e^{+}conformation dominates over the (tg^{-}) one in peptide structures (Benedetti et al., 1983; Doi et al., 1993; Banumathi et al., 1999) and is the most favoured according to conformational energy calculations (Vasquez et al., 1983).

The two packings present strict analogies and are ruled by three-dimensional networks of hydrogen bonds which involve all the donor groups. A view of the packing of (I) is shown in Fig. 3. The N-acetyl-L-threoninate ions, related by screw symmetry along the a axis, are linked through two hydrogen bonds ($\mathrm{O} 4-\mathrm{H} \cdots \mathrm{O} 2$ and $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 4$) forming infinite ribbons parallel to the a direction. The NH_{4}^{+}cations at a

Figure 1
Perspective view of the asymmetric unit of (I) with the atomic labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Perspective view of the asymmetric unit of (II) with the atomic labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.
separation of 4.408 (2) \AA alternate with chains of anions. All the ammonium- H atoms are involved in a three-dimensional network of hydrogen bonds that interconnects screw-related Thr^{-}ions of neighbouring ribbons. In particular, the $\mathrm{N} 2-\mathrm{H} 12$ bond is involved in an asymmetric 'three-centred' hydrogenbond system with O 1 and O 2 as acceptors: the last one corresponding to the weaker component (Taylor et al., 1984; Jeffrey \& Saenger, 1991). Details of the hydrogen-bond geometry are reported in Table 2. The shortest methyl-methyl distance is C4 $\cdots \mathrm{C} 6\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)=3.811$ (4) \AA.

Fig. 4 presents the packing of structure (II) projected along the b direction. Also in this crystal, pairs of hydrogen bonds ($\mathrm{O} 4-\mathrm{H} \cdots \mathrm{O} 2$ and $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 4$) link together the Thr^{-} moieties, related by screw symmetry, forming infinite ribbons of anions that wind parallel to the b direction. These ribbons alternate with methylammonium cations whose nitrogen- H atoms are all involved in hydrogen-bond interactions (Table 4). In this structure there are two asymmetric 'three-centred'

Figure 3
Crystal packing of (I) along the b direction. Dashed lines indicate hydrogen bonds.
hydrogen bonds, both involving N 2 as donor. One bond is formed by H12 with the acceptors O 1 and O 4 (weaker component), the other by H 13 which is shared between the carboxylic O 2 and the acetylic O 3 (weaker) atoms of different Thr^{-}moieties (Table 4). The shortest distance between methylammonium N atoms is $4.480(3) \AA$ and those concerning methyl-C atoms are $\mathrm{C} 4 \cdots \mathrm{C} 6(x, y-1, z)=$ 3.956 (5) and $\mathrm{C} 6 \cdots \mathrm{C} 7(x-1, y, z)=3.805$ (6) Å.

Figure 4
Crystal packing of (II) projected onto the ac plane. Dashed lines indicate hydrogen bonds.

Experimental

The compounds (I) and (II) were obtained as secondary products during ammonolysis of the N-acetyl-L-threonine ethyl ester using NH_{3} or $\mathrm{CH}_{3} \mathrm{NH}_{2}$ in cold ethanol (Lilley, 1988; Sijpkes, 1990), with the primary goal to prepare the N-acetyl-L-threoninamide or -threoninmethylamide. After purification of the products, single crystals of (I) and (II) were obtained by slow evaporation from methyl ethyl ketone-ethyl acetate solutions. The samples of (II) were sealed in glass capillaries with a small amount of mother solution because they are unstable in air at room temperature.

Compound (I)

Crystal data
$\mathrm{NH}_{4}{ }^{+} . \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{-}$
$M_{r}=178.19$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.025$ (1) \AA 。
$b=8.0689$ (4) \AA
$c=16.754(2) \AA$
$V=949.7(2) \AA^{3}$
$Z=4$
$Z=4$
$D_{x}=1.246 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=29-32^{\circ}$
$\mu=0.889 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.34 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-	$\theta_{\max }=75.5^{\circ}$
\quad ometer	$h=-2 \rightarrow 8$
$\omega-2 \theta$ scans as suggested by peak-	$k=-2 \rightarrow 10$
shape analysis	$l=-2 \rightarrow 21$
1478 measured reflections	4 standard reflections
1165 independent reflections	frequency: 120 min
1154 reflections with $I>2 \sigma(I)$	intensity decay: 3%
$R_{\text {int }}=0.036$	

Refinement

Refinement on F
$R=0.036$
$w R=0.044$
$S=0.964$
1154 reflections
111 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+\left(0.02 F_{o}\right)^{2}+4\right]$
(Killean \& Lawrence, 1969)
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
Extinction correction: Stout \& Jensen (1968)
Extinction coefficient: $3.23(4) \times 10^{-5}$
Absolute structure: Rogers (1981)
Rogers parameter $=0.927(4)$

Refinement

Refinement on F
$(\Delta / \sigma)_{\max }<0.001$
$R=0.041$
$w R=0.049$
$S=0.989$
1079 reflections
119 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+\left(0.02 F_{o}\right)^{2}+12\right]$
(Killean \& Lawrence, 1969)
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: Stout \& Jensen (1968)
Extinction coefficient: 5.42 (13) \times 10^{-5}
Absolute structure: Rogers (1981)
Rogers parameter $=1.023$ (8)

Table 3
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

O1-C2	$1.251(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.459(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.270(4)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.326(3)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.230(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.446(5)$
$\mathrm{O} 4-\mathrm{C} 5$	$1.430(3)$		
			$123.9(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$123.2(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$	$120.7(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.6(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$115.4(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$111.7(2)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$110.4(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	$123.9(3)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 1$	$112.1(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$119.7(2)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 6$	$113.4(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$116.4(2)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	
			$4.5(3)$
C3-N1-C1-C2	$-130.4(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$67.4(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 3$	$1.9(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 4$	$-59.3(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-178.0(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	

Table 4
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	1.86	$2.710(3)$	148
$\mathrm{~N} 1-\mathrm{H} 2 \cdots 4^{\mathrm{i}}$	0.95	2.02	$2.961(3)$	169
$\mathrm{~N} 2-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	1.83	$2.775(3)$	170
$\mathrm{~N} 2-\mathrm{H} 12 \cdots \mathrm{O} 1$	0.95	2.05	$2.903(3)$	149
$\mathrm{~N} 2-\mathrm{H} 12 \cdots 4^{\mathrm{i}}$	0.95	2.58	$3.144(3)$	118
$\mathrm{~N} 2-\mathrm{H} 13 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.95	2.27	$2.914(3)$	125
$\mathrm{~N} 2-\mathrm{H} 13 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.38	$3.061(3)$	129
$\mathrm{C} 1-\mathrm{H} 3 \cdots \mathrm{O} 3$	1.02	2.38	$2.816(3)$	104

Symmetry codes: (i) $1-x, y-\frac{1}{2}, 1-z$; (ii) $2-x, y-\frac{1}{2}, 1-z$; (iii) $x, y-1, z$; (iv) $1-x, y-\frac{1}{2},-z$.

Systematic absences and intensity statistics led to the unique assignment of the space group $P 2_{1} 2_{1} 2_{1}$ for (I) and $P 2_{1}$ for (II).

Both structures were solved using the SIR92 package (Altomare et al., 1993). All H atoms were clearly observed in difference Fourier maps and included, with expected geometry, in the final refinements as fixed atoms with $B_{\text {iso }}$ set equal to $B_{\text {eq }}$ of the parent atom. All calculations were performed using SDP software (Enraf-Nonius, 1985) on a MicroVAX 3100 computer. The absolute configuration was chosen on the basis of the known configuration of the ethyl ester used in the synthesis.

The authors wish to thank Professor G. Della Gatta (University of Turin) for submitting the problem and providing the substances.

organic compounds

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1450). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Ashida, T., Tsunogae, Y., Tanaka, I. \& Yamane, T. (1987). Acta Cryst. B43, 212-218.
Banumathi, S., Velmurugan, D., Subramanian, E., Ashish, N. \& Kishore, R. (1999). Acta Cryst. C55, 78-79.

Benedetti, E., Morelli, G., Nemethy, G. \& Scheraga, H. A. (1983). Int. J. Pept. Protein Res. 22, 1-15.
Doi, M., In, Y., Tanaka, M., Inoue, M. \& Ishida, T. (1993). Acta Cryst. C49, 1530-1532.
Engh, R. A. \& Huber, R. (1991). Acta Cryst. A47, 392-400.
Enraf-Nonius (1985). Structure Determination Package. Version 3.0. EnrafNonius, Delft, The Netherlands.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.

Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 1750-1752.
Lilley, T. H. (1988). Biochemical Thermodynamics, edited by M. N. Jones, pp. 1-52. Amsterdam: Elsevier.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Parthasarathy, R., Ohrt, J. M. \& Chheda, G. B. (1974). J. Am. Chem. Soc. 96, 8087-8094.
Puliti, R., De Sena, C. \& Giancola, C. (1997). J. Therm. Anal. 48, 1249-1262.
Puliti, R., De Sena, C. \& Mattia, C. A. (1996). Acta Cryst. C52, 1820-1823.
Puliti, R., Mattia, C. A., De Sena, C. \& Barone, G. (1998). J. Mol. Struct. 442, 1-9.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Sequeira, A., Ramanadham, M., Rajagopal, H. \& Padmanabhan, V. M. (1981). Acta Cryst. B37, 1839-1843.
Sijpkes, A. H. (1990). PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, pp. 409412. New York: Macmillan.

Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Taylor, R., Kennard, O. \& Versichel, W. (1984). J. Am. Chem. Soc. 106, 244-248.
Vasquez, M., Nemethy, G. \& Scheraga, H. A. (1983). Macromolecules, 16, 1043-1049.

[^0]: ${ }^{1}$ Associated to the National Institute for the Chemistry of Biological Systems.

